

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
122

ON-CHIP: AMBA- AHB DESIGN USING DYNAMIC

COMPRESSION AND MULTI-RESOLUTION BUS TRACER
TECHNIQUE

Dr.Nikhil Raj 1, Dr M. Thamarai2, Dr. Ganapathi sridhar3, Dr.D. Kiran4, Dr. Kishor Krishna kumar5
1,2,3,4,Professor, 5Asst. professor, Dept. of ECE,MRCE, Hyderabad

Abstract— AMBA (Advanced

Microcontroller based Bus Architecture)
consists of AHB, APB, ASB and AXI. In this
project we are Tracing AHB (Advanced High
performance Bus) signals with Real time
Compression and Multiresolution
Techniques. A simple transaction on the AHB
consists of an address phase and a subsequent
data phase. Access to the target device is
controlled through a MUX , thereby
admitting bus-access to one bus-master at a
time. In AHB Tracer we have to Trace
Address signals, Data signals and Control
signals the have to compress them depending
on AHB protocols. A multiresolution AHB
on-chip bus tracer is named as SYS_HMRBT
(AHB Multiresolution Bus Tracer) and is
used monitoring. By using this SYS_HMRBT,
we can achieve 79%-96% of compression
depending on selected resolution mode.

Key words- AHB, AMBA, compression,
multiresolution, post- T trace, pre-T trace,
real time trace.

INTRODUCTION
AHB Tracer
The ON-CHIP bus is an important

system-on-chip (SoC) infrastructure that
connects major hardware components.
Monitoring the on-chip bus signals is crucial to
the SoC debugging and performance
analysis/optimization.

Unfortunately, such signals are difficult to
observe since they are deeply embedded in a
SoC and there are often no sufficient I/O pins to
access these signals. Therefore, a
straightforward approach is to embed a bus

tracer in SoC to capture the bus signal trace and
store the trace in an on-chip storage such as the
trace memory which could then be off loaded to
outside world (the trace analyzer software) for
analysis. Unfortunately, the size of the bus trace
grows rapidly. For example, to capture AMBA
AHB 2.0 [1] bus signals running at 200 MHz, the
trace grows at 2 to 3 GB/s. Therefore, it is highly
desirable to compress the trace on the fly in order
to reduce the trace size. However, simply
capturing/compressing bus signals is not
sufficient for SoC debugging and analysis, since
the debugging/analysis needs are versatile: some
designers need all signals at cycle-level, while
some others only care about the transactions. For
the latter case, tracing all signals at cycle-level
wastes a lot of trace memory. Thus, there must
be a way to capture traces at different abstraction
levels based on the specific debugging/analysis
need.

This paper presents a real-time
multi-resolution AHB on-chip bus tracer, named
SYS-HMRBT (aHb multiresolution bus tracer).
The bus tracer adopts three trace compression
mechanisms to achieve high trace compression
ratio. It supports ‘multiresolution tracing’ by
capturing traces at different timing and signal
abstraction levels. In addition, it provides the
‘dynamic mode change’ feature to allow users to
switch the resolution on-the-fly for different
portions of the trace to match specific
debugging/analysis needs. Given a trace
memory of fixed size, the user can trade off
between the granularities and trace length to
make the most use of the trace memory. In
addition, the bus tracer is capable of tracing
signals before/after the event triggering, named

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
123

pre-T/post-T tracing, respectively. This feature
provides a more flexible tracing to focus on the
rest of this documentation is organized as
follows. Chapter2.2 surveys the related work.
Chapter3 illustrates the literature survey of AHB
Tracer. Chapter4 presents the hardware
architecture of our bus tracer. Chapter5 provides
experiments to analyze the compression ratio,
trace depth, and cost of our bus tracer. A case
study is also conducted to integrate the bus tracer
with a 3-D graphics SoC. Finally, Chapter7
concludes this project and gives directions for
future research.

.
II VARIOUS CODE TECHNIQUES:
DUPLEX SYSTEM:
A duplex framework is an illustration of a

traditional excess plan that might be utilized for
simultaneous lapse location demonstrates the
fundamental structure of a duplex framework.
Duplication has been utilized for simultaneous
mistake location as a part of various frameworks
including the Bell Switching System, from
organizations like Stratus and Sequoia. In any
duplex framework there are two modules
(indicated in Fig. 2.1 as Module 1 and Module 2)
that actualize the same rationale capacity. The
two executions are not so much the same. A
comparator is utilized to check whether the
yields from the two modules concur. On the off
chance that the yields deviate, the framework
demonstrates a lapse. For a duplex framework,
information uprightness is protected the length
of both modules don't deliver indistinguishable
blunders (expecting that the comparator is
shortcoming free). Since the comparator is
significant to the right operation of the duplex
framework, extraordinary checking toward
oneself comparator plans (e.g., two-rail checker)
that ensure information respectability against
single comparator flaws must be utilized

Related work
Since the huge trace size limits the trace depth

in a trace memory, there are hardware
approaches to compress the traces. The
approaches can be divided into lossy and lossless
trace compression.

The lossy trace compression approach
achieves high compression ratio by sacrificing

the accuracy; the original signals cannot be
reconstructed from the trace. The purpose of this
approach is to identify if a problem occurs. Anis
and Nicolici use the multiple input signature
register (MISR) to perform lossy compression.
The results are stored in a trace memory and
compared with the golden patterns to locate the
range of the erroneous signals. The locating
needs rerunning the system several times with
finer and finer resolution until the size of the
search range can fit in the trace memory. Such
approach is suitable for deterministic and
repeatable system behaviors. However, for a
complex SoC with multiple independent IPs, the
on-chip bus activities are usually not
deterministic and repeatable. Therefore, lossless
compression approaches are more appropriate
for realtime on-chip bus tracing.

Existing on-chip bus tracers mostly adopt
lossless compression approaches. ARM provides
the AMBA AHB trace macrocell (HTM) [4] that
is capable of tracing AHB bus signals, including
the instruction address, data address, and control
signals. The instruction address and control
signals are compressed with a slice compression
approach (to be explained shortly). On the other
hand, the data address is recorded by simply
removing the leading zeros. The HTM supports a
limited level of trace abstraction by removing
bus signals that are in IDLE or BUSY state. The
AMBA navigator [5] traces all AHB bus signals
without compression. In the bus transfer mode, it
also has a limited level of trace abstraction by
removing bus signals which are in IDLE,
BUSY, or non-ready state. The AHBTRACE in
GRLIB IP library [2] captures the AMBA AHB
signals in the uncompressed form. In addition, it
does not have trace abstraction ability.

There are many research works related to the
bus signal compression. We characterize the bus
signals into three categories: program address,
data address/data and control signals. We then
review appropriate compression techniques for
each category. For program addresses, since they
are mostly sequential, a straightforward way is
to discard the continuous instruction addresses
and retain only the discontinuous ones, so called
branch/target filtering. This approach has been
used in some commercial tracers, such as the
TC1775 trace module in TriCore and ARM’s

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
124

Embedded Trace Macrocell (ETM) [7]. The
hardware overhead of these works is usually
small since the filtering mechanism is simple to
be implemented in hardware. The effectiveness
of these techniques, however, is mainly limited
by the average basic block size, which is roughly
around four or five instructions per basic block.
Other technique such as the slice compression
approach [2] targets at the spatial locality of the
program address. This approach partitions a
binary data into several slices and then records
all the slices of the first data and then only part of
the slices of the succeeding data that are different
from the corresponding slices of the previous
one (usually the lower bit positions of the data).

For data address/value, the most popular
method is the differential approach which
records the difference between consecutive data.
Since the difference usually could be represented
with less number of bits than the original value,
the information size is reduced. Hopkins and
Mc-Donald–Maier showed that the differential
method can reduce the data address and the data
value by about 40% and 14%, respectively. For
control signals, ARM HTM [4] encodes them
with the slice compression approach: the control
signal is recorded only when the value changes.

 Cycle
Level

Transactio
n Level

Time
Granularit y

Cycle
Accurat

e

Event
Triggering

Table1 TIMING ABSTRACTION

As mentioned, compressing all signals at the

cycle- accurate-level does not always meet the
debugging needs. As SoCs become more
complex, the transaction-level debugging
becomes increasingly important, since it helps
designers focus on the functional behaviors,
instead of interpreting complex signals. Tabbara
and Hashmi propose the transaction-level SoC
modeling and debugging method. The proposed
transactors, attaching to the on-chip bus,
recognize/monitor signals and abstract the
signals into transactions. The transactions,
bridging the gap between algorithm-level and
the signal-level, enable easy design
exploration/debugging/monitoring.

Motivated by the related works, our bus tracer

combines abstraction and compression
techniques in a more aggressive way. The goal is
to provide better compression quality and
multiple resolution traces to meet the complex
SoC debugging needs. For example, our bus
tracer can provides traces at cycle-level and
transaction-level to support versatile debugging
needs. Besides, features such as the dynamic
mode change and bidirectional traces are also
introduced to enhance the debugging flexibility.

III IMPLEMENTATION
Figure1 is the bus tracer overview. It mainly

contains four parts: Event Generation Module,
Abstraction Module, Compression Modules, and
Packing Module. The Event Generation Module
controls the start/stop time, the trace mode, and
the trace depth of traces. This information is sent
to the following modules. Based on the trace
mode, the Abstraction Module abstracts the
signals in both timing dimension and signal
dimension. The abstracted data are further
compressed by the Compression Module to
reduce the data size. Finally, the compressed
results are packed with proper headers and
written to the trace memory by the Packing
Module.

Figure1 Multiresolution bus tracer block

diagram.
In AHB Tracer we have the following modules
--Event Generator
--Abstraction
--Compression
--Packing
In addition to these modules we use Trace

Memory o save the data which is compressed by
the Tracer. And we use CHECKER as a external
module from where we can trace data other than
AHB bus.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
125

AHB Protocol checker (HP checker)
Figure2 Protocol Checker
Figure2 shows AHB Protocol Checker (HP

Checker) architecture, which contains two main
function blocks: Protocol Checker, ERROR
Reference Table .Let us introduce these two
blocks individually.

HPChecker is a rule-based protocol checker,
thus how to establish a set of well-defined rules
is very important. We reference Synopsys
verification intellectual property (VIP) to
establish rules. Besides, according to our design
experiences, we add new rules to increase our
error finding ability. In conclusion, our protocol
checker has rules, including master-related rules,
slave-related rules, reset-related rules, and bus
components-related rules. Bus components
include arbiter and decoder.

Protocol Checker is the main core of
HPChecker, the inputs are all AHB bus signals,
and the outputs are ERROR signals and
corresponding master and slave IDs. Every rule
has its own corresponded bit because every cycle
maybe occur more than one error. If the ith bit of
ERROR is set, which indicates current bus
signals violate ith rule. The Master/Slave ID is
formed by the HMASTER signal. If an error
occurs, the HPChecker will output the
corresponded master ID number or slave ID
number to indicate which master or slave
violates the AHB protocol. Event Generation
Module

The Event Generation Module decides the
starting and stopping of a trace and its trace

mode. The module has configurable event
registers which specify the triggering events on
the bus and a corresponding matching circuit to
compare the bus activity with the events
specified in the event registers. Optionally, this
module can also accept events from external
modules. For example, we can connect an AHB
bus protocol checker (HPChecker) to the Event
Generation Module, as shown in Figure4.1, to
capture the bus protocol related trace.

Table4.1 is the format of an event register. It
contains four parameters: the trigger conditions,
the trace mode, the trace direction, and the trace
depth. The trigger conditions can be any
combination of the address value, the data value,
and the control signal values. Each of the value
has a mask field for enabling partial match. For
each trigger condition, designers can assign a
desired trace mode, e.g., Mode FC, Mode FT,
etc., which allows the trace mode to be
dynamically switched between events. The trace
direction determines the pre-T/post-T trace. The
trace depth field specifies the length of trace to
be captured

32 bits
Address
Address Mask
Data
Data Mask
Control
Control Mask
Trace Depth

Trace Direc Ena Chec Even
Mode(tion ble ker t
4bits) Event Num

 bers

 (24
 bits)

Event Numbers(21 bits) [10:0]
zeros

Table2 Event Register.
Abstraction Module
The Abstraction Module monitors the AMBA

bus and selects/filters signals based on the
abstraction mode. The bus signals are classified
into four groups as mentioned below:

Timing and Signal Abstraction Definition
The abstraction level is in two dimensions:

timing abstraction and signal abstraction. At the
timing dimension, it has two abstraction levels,
which are the cycle

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
126

RESULTS
Checker Result
Figure Checker Simulation Result

Figure5.1 shows the simulation result of
checker module. The output for this module is
ERROR register of 44 bit length, in which each
bit represents various protocol errors of AHB.
For example when reset signal is high
(HRESETn) then all the control signals should
be at initial state otherwise they will produce an
error. The protocol list is given in table.
Corresponding to the error, bit of the error
register will respond.

Event Generator Result
Figure Event Generation Simulation Result

This module is responsible for producing the

control signal for the tracer, which represents the

start and stop point of the trace.
Trace_In_Progreess is the output signal for this
module. And this module also produces mode of
trace on which basis the tracer is working.
Figure5.2 shows the simulation result for the
Event Generation module.

Figure Abstraction Simulation Result

Abstraction module takes the inputs from the

AHB bus and the Event Generation module. If
divides the AHB signals into ADDRESS signals,
DATA signals and control signals. It is also
responsible for producing the output depends on
the mode of operation. For example if the trace
mode is in Full cycle signal (FC) then it produces
the output for every clock cycle. If it is in Bus
transaction mode first it encodes the PCS control
signals and generates the output on transactions
only. Figure5.3 shows the simulation result for
ABSTRACTION module.

CONCLUSION
We have presented an on-chip bus tracer

SYS-HMRBT for the development, integration,
debugging, monitoring, and tuning of
AHB-based SoC’s. It is attached to the on-chip
AHB bus and is capable of capturing and
compressing in

real time the bus traces with five modes of
resolution. These modes could be dynamically
switched while tracing. The bus tracer also
supports both directions of traces: pre-T trace
(trace before the triggering event) and post-T
trace (trace after the triggering event). In
addition, a graphical user interface, running on a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017

DOI:10.21276/ijcesr.2017.4.12.20
127

host PC, has been developed to configure the bus
tracer and analyze the captured traces. With the
aforementioned features, SYS-HMRBT supports
a diverse range of design/debugging/ monitoring
activities, including module development, chip
integration, hardware/software integration and
debugging, system behavior monitoring, system
performance/power analysis and optimization,
etc. The users are allowed to tradeoff between
trace granularity and trace depth in order to make
the most use of the on-chip trace memory or I/O
pins.

REFERENCES
[1] YANG et al.: On-Chip AHB Bus Tracer with

Real-Time Compression
[2] AMBA AHB Bus Potocol Checker with

Efficient Debugging Mechanism Yi-Ting Lin,
Chien-Chou Wang, and Ing-Jer Huang Department
of Computer Science and Engineering National Sun
Yat-sen University.

[3] ARM Ltd., San Jose, CA, “AMBA
Specification (REV 2.0) ARM IHI0011A,” 1999.

[4] ARM Ltd., San Jose, CA, “ARM. AMBA
AHB Trace Macrocell (HTM) technical reference
manual ARM DDI 0328D,” 2007.

[5] AHB Example AMBA System Technical
Reference Manual, DDI0170A 1999 ARM Limited.

[6] ARM IHI 0011A AMBA™ Specification
(Rev 2.0)

[7]http://en.wikipedia.org/wiki/Advanced_Microc
ontroller_Bus _Architecture

[8]H.NaeimiandA.DeHon,“Faultsecureencoderan
ddecoderf or nanoMemory
applications,”IEEETrans.VeryLargeScaleIntegr.(VL
SI) Syst.,vol.17,no.4,pp.473–486,Apr.2009.

[9] S. Liu, P. Reviriego, andJ. A. Maestro,
“Efficient majority logic fault detection with
difference-set codes for memory applications,” IEEE
Trans. Very LargeScale Integr. (VLSI) Syst., vol. 20,
no. 1, pp.148– 156,Jan.2012.

[10] M. Y. Hsiao, D. C. Bossen, andR. T. Chien,
“Orthogonal latinsquare codes,” IBM J.
Res.Develop., vol. 14, no. 4, pp. 390–394, Jul.1970.

[11]S.E. Lee,Y.S.Yang,G.S.Choi,W.Wu,
andR.Iyer,“Low- power,

resilientinterconnectionwithOrthogonalLatinSquar
es,”IEEED esign
TestComput.,vol.28,no.2,pp.30–39,Mar.–Apr.2011.

[12] R.DattaandN. A. Touba, “Generatingburst-
errorcorrectingcodesfrom orthogonallatin
squarecodes–agraph
theoreticapproach,”inProc.IEEE

Int.Symp.DefectFaultToleranceVLSINanotechnol.
Syst.,Oct.201 1, pp.367–373.

[13]A.R.Alameldeen,Z.Chishti,C.Wilkerson,W.W
u, andS.- L.Lu,
“Adaptivecachedesigntoenablereliablelow-voltage
operation,”IEEE Trans.Comput.,vol.60,no.1,pp.50–
63,Jan.2011.

[14] G. C. Cardarilli, S. Pontarelli, M.Re, and
A.Salsano,“Concurrent errordetectioninReed-
Solomonencodersanddecoders,”IEEETrans.
TheoryAppl.,vol.27,no.2,pp.215–218,Apr.2011.
Large Scale Integr. (VLSI) Syst., vol. 15, no. 7, pp.
842–846, Jul.2007.

[15] I. M. Boyarinov, “Self-checking circuits and
decoding algorithms
forbinaryhammingandBCHcodesandReed- Solomon
 codesoverGF(2),”Prob.Inf.
Transmiss.,vol.44,no.2,pp.99– 111,2008.

[16] H. Jaber, F. Monteiro, S. J. Piestrak, andA.
Dandache, “Design of parallel fault-secure encoders
for systematic cyclic block trans- mission codes,”
Microelectron. J., vol. 40, no. 12, pp. 1686–1697,
Dec.2009.

[17]S. J.Piestrak,A. Dandache,and F. Monteiro,
“Designing fault-secure parallelencoders
forsystematic linearerror correctingcodes,” IEEE
Trans.Reliab.,vol.52,no.4,pp.492–500,Apr.200

[18]J.A.Maestro,P.Reviriego,C.Argyrides,
andD.K.Pradhan,“Fault tolerant singleerror

correction encoders,” J. Electron.Test.,
J.DénesandA.D.Keedwell,LatinSquaresandTheirAp
plications SanFrancisco,CA:Academic ,1974.

[20] P.K.Lala,Self-CheckingandFault-Tolerant
DigitalDesign.SanMateo,
CA:MorganKaufmann,2001.

[21] K. De, C. Natarajan, D. Nair, andP. Banerjee,
“RSYN: A system for automated synthesis of reliable
multilevel circuits,” IEEETrans. Very Large Scale
Integr. (VLSI) Syst., vol. 2, no. 2, pp. 186–195,
Jun.1994.

[22] N. A. Toubaand E. J. McCluskey, “Logic
synthesis techniques for reduced area
implementation of multilevel circuits with
 concurrent errordetection,”inProc.IEEE/ACM
Int.Conf.Comput.- AidedDesign,
Nov.1994,pp.651–654.

[23] M. Y. Hsiao, “A class of optimal minimum
odd-weight column SEC-

DEDcodes,”IBMJ.Res.Develop.,vol.14,no.4,pp.39
5–301,

